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sequenced bacterial genomes. With the first report of a 
complete sequence of S. coelicolor genome it became 
clear that secondary metabolism of Actinobacteria is hid-
ing a huge chemical diversity encrypted in silent (cryp-
tic) biosynthesis gene clusters. Additional actinomycete 
genome sequencing projects further enhanced this idea. 
To a large surprise, it was found that well-studied strains 
with established metabolomic profiles are potentially 
able to produce a larger variety of chemical structures 
than were originally determined. Despite years of stud-
ies, these compounds remained undiscovered. The com-
munity began to develop novel ways to screen for bio-
logically active compounds. Efforts have been redirected 
from the environmental screening to focus on studying 
regulation mechanisms of secondary metabolism and 
to develop strategies to activate silent gene clusters. 
The years of science devoted to studying actinomycetes 
genetics accumulated a large number of genetic tools 
for DNA manipulations and identified a set of elements 
controlling gene expression. The application of synthetic 
biology to actinomycetes genetics further expanded this 
set of tools. Many of the newly developed approaches 
combine novel genetic techniques and regulatory ele-
ments for gene expression to successfully discover novel 
natural products produced from cryptic gene clusters. In 
this review we summarize some of the strategies used for 
silent gene cluster activation as well as discuss the most 
important tools and instruments used in these approaches. 
Furthermore, we will describe a set of transcriptional 
and translational control elements of synthetic biology 
as well as reporter genes for studying cryptic secondary 
metabolism. The right choice of strategies and tools for 
activation of cryptic metabolic pathway will lead to a 
higher efficiency of discovery of chemical structures hid-
den in actinomycetes genomes.

Abstract Actinomycetes genome sequencing and bio-
informatic analyses revealed a large number of “cryptic” 
gene clusters coding for secondary metabolism. These gene 
clusters have the potential to increase the chemical diver-
sity of natural products. Indeed, reexamination of well-
characterized actinomycetes strains revealed a variety of 
hidden treasures. Growing information about this metabolic 
diversity has promoted further development of strategies to 
discover novel biologically active compounds produced by 
actinomycetes. This new task for actinomycetes genetics 
requires the development and use of new approaches and 
tools. Application of synthetic biology approaches led to 
the development of a set of strategies and tools to satisfy 
these new requirements. In this review, we discuss strate-
gies and methods to discover small molecules produced 
by these fascinating bacteria and also discuss a variety of 
genetic instruments and regulatory elements used to acti-
vate secondary metabolism cryptic genes for the overpro-
duction of these metabolites.

Keywords Actinomycetes · Cryptic gene clusters · 
Synthetic promoters · Heterologous expression · Genome 
mining

Introduction

The rapid development of sequencing technologies 
has led to an avalanche-like increase in the number of 
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OSMAC: old dog, new tricks

For years it was postulated that S. coelicolor produces only 
four compounds—actinorhodin, undecylprodigiosin, meth-
ylenomycin, and calcium-dependent antibiotic (CDA) [59, 
94, 116, 128]. Genome analysis of this bacterium showed 
a much broader chemical potential than was thought [6]. 
This has led to the isolation of several new compounds. 
Some of them are discussed below. S. avermitilis, another 
well-studied antibiotic producer, has been found to encode 
38 secondary metabolites gene clusters [46, 78]. The num-
ber of such examples is growing with the growing num-
ber of actinomycetes genomes sequenced. Some of these 
secondary metabolism genes are non-functional or silent 
under standard laboratory conditions. However, transcrip-
tome analysis clearly shows that the majority of these 
genes are transcribed at very low levels. DNA microarrays 
of S. coelicolor grown on solid media showed transcription 
of 12 out of 22 secondary metabolism gene clusters [131]. 
Seven of these were considered to be cryptic. Further-
more, during exponential growth of S. coelicolor culture 
RNA sequencing showed transcription of 7,800 individual 
genes, including those involved in secondary metabolism 
[31]. Eighteen secondary metabolite gene clusters out of 
25 were found to be transcribed in S. avermitilis, whereas 
only two compounds were known to be produced before 
the genome was sequenced [17, 78]. Furthermore, S. coe-
licolor proteomics revealed the presence of enzymes from 
three gene clusters with unknown products [41, 49]. These 
data show that the majority of secondary metabolism gene 
clusters in streptomycetes are not silent, but expressed at 
a very low level under laboratory conditions. Often the 
transcription of the gene clusters under these conditions is 
not sufficient to produce detectable amounts of secondary 
metabolites. Several approaches have been used to boost 
secondary metabolism gene expression in order to reveal 
novel compounds.

It is known that under certain conditions secondary 
metabolites may provide selective advantages to the produc-
ing strains [15]. Accordingly, production of these secondary 
metabolites occurs only under certain environmental condi-
tions. This idea has been used to identify new compounds 
from well-studied producers or multiple compounds from 
the same strain. This strategy is named “one strain/many 
compounds” (OSMAC) [12, 77]. Typical screening pro-
grams concentrate their efforts on the most abundant or 
most active compounds produced by a strain. These pro-
grams are based on existing knowledge about a particular 
metabolite production, thus applying standard conditions. It 
is well known that even insignificant changes in nutritional 
or environmental factors during cultivation can influence 
the quantity and the variety of accumulated metabolites. 
The OSMAC approach combined with well-established 

chemical screening strategies has led to the discovery of 
novel secondary metabolites from old sources.

Bioinformatic analysis of the S. coelicolor genome 
uncovered a set of cryptic secondary metabolite gene clus-
ters. Further investigation into these cryptic genes led to 
the discovery of several new compounds (Fig. 1). Among 
them, type III polyketide synthases (PKSIII) synthesized 
germicidins and isogermicidins [107] and PKSI synthe-
sized yellow polyketide compound coelimycin P1 [35]. The 
later one was identified after deletion of the regulatory gene 
scbR2 within the cryptic PKSI cpk-cluster [36]. Coelimy-
cin P1 was also reported to be detected using the OSMAC 
approach by growing S. coelicolor on glucose-free-rich 
media [84]. The carotenoids isorenieratene and β-carotene 
accumulate only after S. coelicolor is illuminated with blue 
light [114]. Accordingly, the expression of carotegenesis 
genes was shown to be dependent on the light-inducible 
sigma factor associated with the cluster. A combination of 
S. coelicolor genome mining and OSMAC approaches led 
to the identification and isolation of the NRPS-synthesized 
siderophore coelichelin (Fig. 1) [61]. Here, researchers 
used in silico analysis to predict the chemical structure and 
properties of a secondary metabolite encoded by a cryptic 
gene cluster. Their hypothesis that the metabolite would act 
as a Fe3+-chelating agent was critical for selecting culture 
conditions used to identify the corresponding compound. S. 
coelicolor was found to accumulate coelichelin when grow-
ing on iron-deficient, but not on iron-rich media [61]. This 
study is a great example of combining several approaches 
to identify novel metabolites encrypted in silent PKS and 
NRPS gene clusters in Streptomycetes genomes.

Carlson and co-authors isolated an entire group of 
amphiphilic siderophore compounds produced by S. coeli-
color using a combination of OSMAC and integrated global 
metabolomic analyses [104]. When grown at elevated tem-
peratures, S. coelicolor was found to accumulate 25 new 
compounds that are absent when grown under regular condi-
tions. Fragmentation pattern comparison was used to group 
metabolites and thus to simplify further analysis. This led 
to the identification of a cluster of 17 similar compounds, 
one of which, ferrioxamine B (Fig. 1), was previously found 
to be produced under iron-deficient growth conditions [5]. 
The 16 remaining compounds, though produced by other 
strains, are new to the S. coelicolor metabolome. Ochi and 
co-authors found that the addition of the rare earth elements 
scandium and lanthanum dramatically boosts transcription 
of genes from nine secondary metabolism biosynthesis gene 
clusters in S. coelicolor including four with unidentified 
metabolites [115] (for detailed review see [77]).

A great number of successful examples of applying the 
OSMAC approach to discover new secondary metabo-
lites from different sources including bacteria and fungi 
are provided by the excellent works of Zeeck et al. [12]. 
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They isolated over 100 compounds belonging to 25 differ-
ent scaffold classes from only six organisms. OSMAC rep-
resents a powerful tool for the investigation of a microor-
ganism’s secondary metabolome by changing basic growth 
conditions like media composition, aeration rate, illumina-
tion, and temperature. This method does not require any 
genomic information or genetic manipulations with the 
strain to achieve the desired results. However, due to a lack 
of understanding of environmental triggers of secondary 
metabolism this approach requires a systematic alteration 
of growth parameters in order to achieve the maximum 
efficiency of metabolite isolation. This makes it inefficient 
and time consuming. Furthermore, there is no guarantee 
that the necessary conditions can be found to facilitate 
the production of all compounds from a particular strain. 

Since the OSMAC approach relies on specific conditions 
for each desired metabolite, it is challenging to use it to 
develop basic rules that can be used for all producers. How-
ever, by combining OSMAC with genome mining, genetic 
engineering and deep chemical analysis will lead to a 
greater realization of streptomycetes secondary metabolism 
potential.

Post‑genomic strategies for cryptic secondary 
metabolism gene cluster activation

The availability of genomic information provides opportu-
nities for the design of rational approaches for silent gene 
cluster activation. The number of successful examples of 

Fig. 1  Chemical structures of secondary metabolites accumulated by S. coelicolor as a result of activation of cryptic gene clusters
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converting genomic information into secondary metabo-
lites is rapidly growing with the increasing number of 
sequenced Actinobacteria genomes. MS-guided genome 
mining strategies work from gene-to-metabolite. These 
strategies led to the identification of new NRPS sidero-
phore production by S. peucetius [83] and PKSI assem-
bled polyketide ECO-02301 by bicyclomycin producer 
S. aizunensi (Fig. 2) [66]. Dorrestein and co-authors used 
an opposite workflow approach to identify genes encod-
ing peptide natural products from bacteria with sequenced 
genomes [52, 110]. Their strategy used MS–MS sequenc-
ing of peptides, identification of its biosynthetic origin 
(lantibiotic, cyclic peptide, etc.), followed by identifica-
tion of the corresponding gene and gene cluster. They 
were able to identify genes for lantibiotics, lasso-peptides, 
and NRPs production [62]. A reverse approach allows 
rapid and fast identification of peptide natural products 
and corresponding gene clusters. However, reverse proce-
dures (from gene to metabolite) are limited to compounds 
whose chemical structures are directly determined by 

gene organization such as lantibiotics, NRPS, and PKSI. 
Development of in silico tools for predicting second-
ary metabolite chemical structures from corresponding 
enzymes will significantly expand the utilization of this 
approach [10, 130].

Secondary metabolism in bacteria is usually tightly 
controlled, and the activation of corresponding genes 
requires certain external and/or internal triggers. Replace-
ment of promoters in biosynthetic or regulatory genes as 
well as heterologous expression of entire clusters releases 
these genes from the tight environmental control of the 
native strain, which can lead to the accumulation of the 
respective compounds. Expression of biosynthetic genes 
in heterologous hosts with well-characterized metabo-
lomic profiles allows rapid identification of new com-
pounds. This procedure is also especially useful when 
working with strains without established gene engineer-
ing methodologies. An example of such an approach is 
the isolation of the new S. coelicolor metabolite dimeth-
ylallylindole-3-acetonitrile (5-DMAIAN) by expression 

Fig. 2  Structures of secondary metabolites obtained as a result of different application of strategies for activation of silent clusters in streptomy-
cetes
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of a putative gene cluster containing an indole-prenyl-
transferase in S. lividans (Fig. 1) [80]. The accumulation 
of the new product was achieved by a simple increase in 
copy number of the corresponding genes. Pholipomycin 
biosynthetic genes are usually silent in S. clavuligerus. 
This gene cluster was efficiently expressed in engineered 
S. avermitilis SUKA22 strain [55]. Constitutive ermEp*-
driven expression of the LAL family regulator of the S. 
ambofaciens cryptic PKSI gene cluster led to the accu-
mulation of a new group of glycosylated macrolides 
stambomycins [60]. Similarly, pladienolide production 
in S. avermitilis was achieved only after the introduc-
tion of pldR transcriptional regulator gene under control 
of ermEp* [56]. The phenazine biosynthetic gene cluster 
of S. tendae was activated by replacement of the natural 
promoter in the major operon by ermEp*, resulting in an 
accumulation of this compound and its derivative α-N-
(phenazine-1-carbonyl)-l-glutamine by recombinant S. 
coelicolor strain (Fig. 2) [96].

Genome mining approaches require several conditions to 
efficiently activate silent gene clusters. First, the producing 
organism should be genetically tractable. This limitation 
may be overcome by the utilization of a heterologous host. 
Secondly, the size of many interesting secondary metabo-
lism gene clusters exceeds the current capacities of tradi-
tional cloning systems. Thus, shuttle E. coli-Streptomyces 
bacterial artificial chromosomes have been developed as a 
way to introduce large DNA inserts into Streptomyces (for 
review see [1]). Thirdly, manipulations with gene clusters 
require that a set of tools for engineering large fragments 
of DNA be available. Lastly, a pool of transcriptional and 
translation control elements is required for successful con-
trolled expression of target genes.

Bio‑bricks to build a metabolic factory

Synthetic biology offers new strategies for decrypting 
actinomycetes secondary metabolism potential [30]. This 
biological engineering approach suggests breaking the 
entire biosynthetic cluster into separate blocks in which 
the native regulatory elements are replaced to allow for 
fine tuning and coordinated gene expression independent 
of the host factors. A similar strategy was used in the early 
1990s by Khosla and co-authors to study aromatic polyke-
tide biosynthesis [67]. The expression plasmid, pRM5, was 
constructed to allow simple swapping of the individual 
genes from the biosynthetic pathway. This system also uti-
lized the first engineered Streptomyces host strain S. coe-
licolor CH999, lacking production of actinorhodin and 
undecylprodigiosin.

Efficient expression of entire biosynthetic gene clusters 
is often limited by the chosen host strain. High GC content 

of streptomycetes genes and differences in regulatory ele-
ments of gene expression limits utilization of classical 
microorganisms like E. coli or Saccharomyces cerevisiae 
as hosts for secondary metabolism gene expression. In all 
known cases of antibiotic biosynthetic gene cluster recon-
stitution in E. coli, the respective genes were transcribed 
from the T7 promoter [11, 86]. Recently, a very interesting 
attempt at expressing the oxytetracycline gene cluster from 
S. rimosus in E. coli was reported by Boddy and co-authors 
[108]. Overexpression of the E. coli alternative sigma fac-
tor σ54 involved in nitrogen assimilation facilitated tran-
scription of the otc genes and consequent accumulation 
of oxytetracycline up to 2 mg/l. However, in many cases 
streptomycetes are preferable hosts for such experiments. 
The ideal host should allow for simple and quick genetic 
manipulations, be suitable for high level production of a 
diverse group of secondary metabolites, have a high sup-
ply of precursors for different metabolic pathways, and 
have a simple secondary metabolism profile that will allow 
for rapid identification and purification of produced com-
pounds. The generation of S. coelicolor and S. avermitilis 
host strains partially fulfill these requirements [33, 34, 46, 
55, 56, 134]. Several other strains used as heterologous 
expression hosts include S. lividans TK24 and S. albus G 
J1074 (for review see [4]). A recently proposed alternative 
to these traditional strains is the fast-growing thermophilic 
streptomycetes. These bacteria are liked because their short 
cell cycle can lead to higher biomass accumulation as com-
pared to traditional hosts in the same period of growth [18].

Transcriptional control

Important components of genome-mining approaches are 
elements providing well-tuned and balanced expression 
of target genes. This can include constitutive and induc-
ible promoters with different strengths of transcription ini-
tiation, an RBS site specifically tuned for individual genes, 
and strong terminators to prevent generation of unstable 
transcripts. Features of some of the widely used Streptomy-
ces promoters and terminators are summarized in Tables 1 
and 2. The promoter of the erythromycin resistance gene 
from S. erythreae is one of the most studied and widely 
used promoters in Streptomyces genetics [8]. The original 
ermEp region contains two different promoters, ermEp1 
and ermEp2, and is partially inducible in a native context 
[9]. Deletion of TGG in the −35 region of the ermEp1 
resulted in a higher initiation rate [9]. This new upregulated 
variant was named as ermEp* and has been used in numer-
ous applications, including multiple cases of silent gene 
cluster activation.

Another strong constitutive promoter SF14p consist-
ing of two tandemly arranged promoters was cloned from 
S. ghanaensis bacteriophage I19 [58]. It was demonstrated 
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to be twofold more active than ermEp*, however it has not 
found much application in streptomycetes genetics. Ikeda 
and co-authors successfully used the promoter of the S. 
avermitilis rpsJ (sav4925) gene, which encodes riboso-
mal protein S10, to express several regulatory genes and 
entire biosynthetic gene clusters in heterologous hosts [46, 
55, 56]. Utilization of housekeeping gene promoters from 
the host bacteria may improve expression of the target 
gene since some of them (e.g., those encoding ribosomal 
proteins, RNA polymerase, etc.) are usually expressed at 
very high levels. However, activity of these promoters may 
be susceptible to changes in growth conditions and other 
internal and external factors. Studies on actinorhodin bio-
synthesis regulation led to a deep understanding of factors 
influencing the activity of act promoters. Based on this 
data, several actII-ORF4/actIp-containing vectors were 
developed for gene expression in different actinomycetes 
[126]. However, this system was found to be efficient only 
in S. coelicolor but not in other strains. Replacement of the 
native promoter of actII-ORF4gene with ermEp* resulted 
in much more efficient expression of the erythromycin PKS 
module DEBS1-TE and accumulation of the respective 
triketide lactone in multiple hosts. Several other native pro-
moters were tested to drive transcription of target genes in 
different Streptomyces species, however, none of them have 
been used extensively [93, 98].

As an alternative to native streptomycetes promoters, 
synthetic promoters or promoter systems from other bacte-
ria could be used. In such cases, transcription of the target 
gene is less dependent on host factors. The first fully syn-
thetic promoter for use in streptomycetes was based on the 
consensus sequences of the Streptomyces–E. coli like pro-
moter, however it was found to be inefficient [98]. The first 
synthetic promoter combining features of consensus pro-
moter sequences from both E. coli and Streptomyces was 
constructed by Denis and Brzezinski and is active in both 
bacteria [25]. Recently, several reports of generating syn-
thetic Streptomyces promoters have been published. Yang 
et al. reported consequent modification of a cpkO (kasO) 
gene promoter encoding an SARP-type transcriptional reg-
ulator from the coelimycin P1 cluster of S. coelicolor [122]. 
Expression of this gene is known to be negatively regulated 
by two γ-butyrolactone receptor proteins ScbR and ScbR2 
[129]. Sequential truncations of the 400-bp region contain-
ing the core sequence of the promoter resulted in the gener-
ation of a cpkOp variant whose expression is not dependent 
on ScbR2. Further randomizing of the ScbR binding region 
led to the generation of a constitutive promoter, kasOp*. 
Activity analysis of this synthetic promoter showed that it 
is stronger than ermEp* and SF14p.

Virolle and co-authors generated a set of 38 synthetic 
promoters of different strengths by randomizing the spacer 

Table 1  Streptomyces promoters used in expression vectors

Promoter Description References

ermEp Strong, constitutive promoter from erythromycin resistance gene, partially inducible in S. erythreae [8]

ermEp* Modification of ermEp with increased activity. Strong, constitutive [9]

SF14p Strong constitutive promoter from S. ghanaensis bacteriophage. Two fold more active than ermEp* [58]

actIp Promoter of major actinorhodin biosynthesis operon of S. coelicolor. Strong, temporally controlled. Activity of actIp 
requires actII-ORF4 gene product

[67, 126]

kasOp* Modified promoter of cpkO (kasO) gene from S. coelicolor coelimycin P1 gene cluster. Strong, constitutive. Shown to  
be more active than ermEp* and SF14p

[122]

A1p-D4p Library of synthetic promoters with consensus −10 and −35 sequences recognized by HrdB sigma polymerase. Con-
stitutive promoters of different strengths are available. Activity of the strongest variant does not exceed the activity of 
ermEp*

[100]

P21p Library of synthetic promoters based on −10 and −35 sequences of ermEp1. Constitutive promoters of different  
strengths are available. Activity of the strongest variant P21 exceeds the activity of ermEp* by 1.6 fold

[105]

tipAp Strong, thiostrepton-inducible promoter from S. coelicolor. Induction range up to 200 fold. Requires TipA protein for 
activation. Leaky

[57]

tcp830p Strong, tetracycline-inducible promoters combining ermEp1 sequence and tet operators from E. coli Tn5. Induction  
range up to 270 fold in the case of tcp830p. Requires TipA protein for activation. Leaky

[91]

T7p T7p/T7 RNA polymerase system adopted from E. coli. Strong, thiostrepton inducible. Large range of induction, suitable 
for transcription of long DNA fragments. Tightly controlled, not leaky. Strain construction required

[63]

nitAp Nitrilase gene promoter from Rhodococcus rhodochrous. Strong, inducible with ε-caprolactam. Requires repressor gene 
nitR. Tightly controlled and expression level strictly depends on inducer concentration

[39]

gylP Glycerol-inducible promoter from S. coelicolor. Requires gylR regulator for activity [42]

TREp Temperature-induced promoter from S. nigrifaciens plasmid pSN22. Requires traR gene for activity. Induced by  
incubation at 37 °C

[51]
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region between the −10 and −35 consensus sequences 
of Streptomyces promoters, which are recognized by the 
major vegetative sigma factor HrdB [100]. The obtained 
promoters were grouped into three categories: weak, 
medium, and strong. Though these promoters were active 
in several Streptomyces species, even the strongest of them 
did not exceed the level of activity of ermEp*.

A similar approach was used in our laboratory to gener-
ate a library of Streptomyces synthetic promoters based on 
the −10 and −35 sequences of ermEp1 [105]. The library 
of 56 synthetic promoters has activity ranging from 2 to 
319 % compared to ermEp1 with the strongest promoter, 
P21p, exceeding the ermEp* activity up to 1.6 fold. P21p 
was successfully used to overexpress the chalcone synthase 
rppA gene in S. albus resulting in higher yields of flaviolin 
accumulation compared to a construct with ermEp*. Three 
promoters of different strengths were shown to be active 
in multiple Actinobacteria strains. We predict that further 
screening of randomized promoters will expand our cur-
rent library. This randomization strategy could also be 
applied to generate promoter libraries with a broad range 
of activity using promoter sequences from highly expressed 
genes as the starting base. Furthermore, described experi-
ments provide the first insights into features influencing the 
strength of Streptomyces promoters. This information can 
aid the rational design of synthetic promoters with desired 
characteristics. Well-characterized promoters of different 
strengths will allow for the controlled expression of dif-
ferent genes or operons to enable preservation of native 
enzyme stoichiometry in secondary metabolism biosyn-
thetic pathways.

Several inducible promoter systems are also utilized 
in Streptomyces genetics. The tipAp promoter was cloned 
from S. lividans after observation of its ability to boost 
transcription of respective gene tipA in the presence of the 
antibiotic thiostrepton [71]. tipAp is a strong promoter that 
is induced upon addition of thiostrepton, up to 200 fold in 
S. lividans and at least 60–80 fold when expressed in other 
strains [57, 98]. tipAp was used to construct a range of 
vectors successfully utilized for gene expression in strep-
tomycetes [113, 126]. However, the tipAL gene encoding 
the positive regulator of tipAp is not present in all strepto-
mycetes [132]. To avoid this problem, the tipA gene was 
placed together with tipAp on plasmid vectors [2]. The 
drawbacks to the tipAp promoter system are that the pres-
ence of the thiostrepton resistance gene is necessary in 
many cases to protect host cells against toxicity from the 
inducer compound and that tipAp is a leaky promoter that 
cannot be fully repressed due to the nature of its regulation 
[19]. Despite these disadvantages, tipAp remains the most 
used inducible promoter in Streptomyces genetics.

Smith and co-authors reported construction of a set of 
synthetic inducible promoters based on ermEp1 and tetO1 

and tetO2 operator regions from the E. coli transposon 
Tn10, which are responsible for binding of the TetR repres-
sor protein [91]. The tetR repressor gene variant (tTA-2) 
developed for use in higher eukaryotes was further adapted 
for expression in streptomycetes and showed efficient 
repression and induction in the tested system. The anhydro-
tetracycline inducer has an insignificant effect on a host’s 
genes expression. One promoter, tcp830p, showed the 
largest change in transcription levels between uninduced 
and induced states and was among the strongest promot-
ers tested in this work. This system is functional in several 
commonly used streptomycetes strains and was success-
fully used to express the novobiocin biosynthetic gene 
cluster in S. coelicolor [22]. The main advantages of this 
system are the use of non-toxic anhydrotetracycline and 
tighter induction control compared to tipAp. However, tcp 
promoters are not fully repressed, and some level of tran-
scription still can be observed even without the inducer.

Shareck and co-authors generated a T7 expression sys-
tem suitable for streptomycetes by cloning a TTA-less 
T7-DNA polymerase gene under control of tipAp in S. 
lividans and constructing a complimentary T7 promoter 
expression plasmid [63]. The system was shown to tightly 
control transcription and have a great induction range. 
However, the level of expression is generally lower than 
available constitutive promoters. Additionally, this system 
requires construction of an expression host by introducing 
the T7-polymerase expression plasmid first. Furthermore, 
the use of the tipA promoter that drives the expression of 
the T7-polymerase creates the same limitations that are 
found in the tipAp system.

The snpAp promoter of the metalloproteinase gene from 
Streptomyces sp. strain C5 whose transcription is controlled 
by the SnpR transcriptional regulator was used to construct 
expression vectors [26, 76]. Expression from this promoter 
does not require adding an inducer. Rather, its expression 
is modulated by physiological changes of the host strain 
during transition into the stationary phase of growth. The 
nitAp promoter of the nitrilase gene and the corresponding 
regulator NitR of actinomycetes Rhodococcus rhodochrous 
are widely used for gene expression in streptomycetes [39]. 
Expression from nitAp is induced by ε-caprolactam and is 
highly dose-dependent. This is extremely useful for fine-
tuning of target gene expression. nitAp/nitR-based vectors 
are used mostly for protein overproduction in streptomy-
cetes. S. coelicolor possesses a glycerol-inducible system 
consisting of a gylR regulator gene and a gylP1/P2 glyc-
erol-inducible promoter [42]. However, utilization of this 
system is limited because the addition of glycerol to the 
media may affect the production of secondary metabolites. 
Yoshida and co-authors developed a temperature-inducible 
expression system by mutating the traR/TREp region from 
S. nigrifaciens plasmid pSN22 [51]. Growth of S. lividans 
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at elevated temperatures induces transcription. This sys-
tem is tightly controlled, unfortunately, however, not all 
Streptomyces species can be successfully cultivated at such 
conditions.

Several other constitutive and inducible streptomycetes 
promoters are well studied and some of them are used for 
gene expression. These include the galactose-inducible, 
galP1p, and constitutive, galP2p, promoters from the galac-
tose operon of S. lividans [29], the metalloendopeptidase 
(SSMP) gene promoter from S. cinnamoneus TH-2 [38], 
the principal sigma factor hrdBp gene promoter of S. coeli-
color [27], the cellobiose-inducible system from plant path-
ogenic S. scabies [50], the γ-butyrolactone receptor system 
from S. coelicolor [112], and the mitomycin C-inducible 
promoter of mitomicin resistance locus mrc of S. lavendu-
lae [3]. Among all tested promoters, the hrdBp was shown 
to be the strongest, exceeding the activity of ermEp* and 
others in practical applications [27]. In summary, a set of 
well-characterized promoters with different strengths for 
gene expression in streptomycetes are available. If strong 
and constitutive expression is required, promoters of major 
housekeeping genes like those encoding ribosomal proteins 
or RNA polymerase components or well-studied promot-
ers from secondary metabolism genes would be a prefer-
able choice. However, if inducible gene expression or tuned 
expression of several independent genes or operons is 
desired, several promoters are available, but all have limita-
tions. The streptomycetes community would greatly benefit 
from enhanced tools for tuned expression of genes. There 
exists a need for a broader library of promoters with dif-
ferent transcription initiation rates and a need for tightly 
controlled inducible systems. Synthetic biology approaches 
may expand the number of well-characterized native and 
synthetic promoters with desired features for use in strepto-
mycetes gene expression.

Other important components of transcriptional regula-
tion systems are terminators. Efficient termination of tran-
scripts influences their stability (for review see [90]). The 
use of terminators in cloning vectors ensures controlled 
expression of the target gene from the desired promoter 
and prevents their expression from promoters of vector 
components. Several rho-independent terminators have 
been characterized and used in streptomycetes (Table 2). 
Typically, rho-independent terminators consist of a GC-
rich hairpin loop followed by a T-rich stretch [97]. This 

structure is important for both efficient termination of tran-
scription and mRNA stability. Cloning of the S. fradiae aph 
gene terminator downstream of the human interferon gene 
significantly improved production of this protein in S. liv-
idans presumably by preventing generation of long unsta-
ble transcripts [87]. This terminator was found to provide 
90 % termination efficiency. Terminators ta,b,c from øC31 
phage were also tested and showed up to 75 % termination 
efficiency for ta [47]. Interestingly, both the taph terminator 
and the ta,b,c terminators lack the T-rich stretch. A bidirec-
tional terminator was cloned from Streptomyces plasmid 
pIJ101 and shown to be active both in E. coli and S. liv-
idans [24]. Several terminators from other organisms have 
also been used successfully in Streptomyces expression 
systems. The most commonly used are the major termina-
tor of E. coli fd phage [123] and t0 terminator of phage λ 
[99]. The tfd terminator is a bidirectional terminator used in 
a set of reporter and expression vectors. S1 nuclease map-
ping experiments demonstrated its high efficiency in termi-
nating transcription ranging from 97 to 99 % [123]. t0 ter-
minator is the end of a short λ phage antisense RNA (oop 
RNA), which is initiated at promoter p0 and was described 
as one of the most efficient terminators [68]. TD1 termina-
tor from B. subtilis bacteriophage ø29 was shown to ter-
minate transcription in S. lividans with 80–85 % efficiency 
[88]. The high efficiency of preventing transcription by 
studied heterologous terminators suggests that most of the 
rho-independent transcription terminators would be active 
in streptomycetes. Furthermore, highly efficient transcrip-
tion termination of a target gene may be achieved by using 
a combination of a several terminators. The availability of 
genomic information made possible the global identifica-
tion and analysis of 3′-untranslated region from different 
bacteria and provided tools for generation of terminator 
sequences with specific features [69, 74].

Translational control

A high rate of gene expression requires efficient translation 
and translation initiation. Translation initiation depends on 
numerous factors, among which the appropriate start codon 
usage and the ribosome binding site (RBS) are the most 
important. The implication of rare codons in regulation of 
translation and gene expression in streptomycetes is a well-
known fact (for review see [16]). Many Streptomyces genes 

Table 2  Terminators used in Streptomyces gene expression

Terminator Description References

tfd E. coli phage fd terminator. Provides high-efficiency transcriptional termination (97–99 %). Bidirectional [123]

t0 E. coli phage λ terminator. Provides high-efficiency transcriptional termination (93–98 %). Unidirectional [68, 99]

taph S. fradiae aph gene terminator. Provides high-efficiency transcriptional termination (90 %) [87]
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utilize alternative start codons GTG (32 %) and TTG (3 %) 
instead of ATG. Recently, we demonstrated that among all 
possible start codons, TTG is the most efficient in initiat-
ing translation of gusA β-glucuronidase reporter gene in S. 
albus whereas ATG and GTG showed a 2–3 times lower 
level of translation initiation [72]. CTG was the least effi-
cient and expressed only 5 % of activity compared to the 
TTG variant.

The RBS is usually a sequence upstream from the start 
codon complementary to the 3′ region of 16S rRNA. Anal-
ysis of a large number of Streptomyces genes showed that 
often the Shine-Dalgarno (SD) sequence ranged from 5 to 
12 bp from the translational start codon [109]. However, 
the analysis also showed that many streptomycetes genes 
do not contain a 5′-untranslated region (5′UTR). Rather 
transcription initiates directly at the translation start point 
[119]. Manipulations with RBSs and their numbers can 
significantly affect efficiency of gene expression in strep-
tomycetes [81]. Several natural and synthetic RBSs have 
been used in streptomycetes expression vectors. Human 
interferon was successfully expressed in S. lividans using 
the RBS of the E. coli lipoprotein encoding gene [89]. A 
synthetic RBS complementary to B. subtilis 16S rRNA was 
used to express the streptothricin acetyltransferase gene 
from S. lavendulae in both B. subtilis and S. lividans [44]. 
A set of vectors based on the actII-ORF4/actIp system 
containing an actI RBS site upstream from the MCS were 
used to overexpress erythromycin biosynthesis genes [93]. 
The ribosome binding site of the tipA gene is used in many 
tipAp-based vectors [113]. Two different synthetic RBSs 
(RBSa and RBSb) were utilized in a set of integration 
expression vectors with ermEp* promoter [70]. Both RBSs 
include the consensus hexamer AGGAGG, in two differ-
ent sequence contexts. RBS-a was derived from the highly 
expressed S. ramocissimus gene encoding elongation factor 
EF-Tu whereas RBS-b is adapted from the consensus RBS 
sequence for E. coli. In most cases, however, the native 
RBS and native transcriptional terminator of a target gene 
are used in expression constructs.

It is well known that elements of a translation initiation 
region (TIR) other than SD also affect gene expression. The 
nucleotides directly upstream and downstream of the start 
codon as well as the distance of a SD sequence from the 
start codon have been shown to influence the translation 
initiation rate in bacteria [32]. This means that any manipu-
lation of the native promoter sequence and coding region 
of the target gene will affect the translation initiation effi-
ciency. Therefore, design of a new RBS is often required. 
This could be done experimentally by cloning a library of 
randomly synthesized RBS sequences between the pro-
moter of choice and the first few nucleotides of the target 
gene. This construct when fused to a reporter gene will 
allow selection a vast array of RBSs with different rates of 

translation initiation of a particular target gene. This strat-
egy was used to study features of the E. coli RBSs and the 
collected data was used in generating RBS prediction soft-
ware such as the RBS Calculator [32], RBS Designer [73], 
or UTR Designer [102]. RBSs with desired translation ini-
tiation efficiency for each particular gene can be predicted 
by using this software, however, due to general biology 
differences between E. coli and Streptomyces, the designed 
RBSs should be still verified experimentally using reporter 
genes.

RNA silencing is another type of translational control 
that is becoming widely used to regulate gene expres-
sion in prokaryotes (for review see [92]). It is well docu-
mented that bacteria use small non-coding RNA (ncRNA) 
to regulate diverse cellular processes. Silencing ncRNA act 
by binding to the target mRNA, which inhibits ribosome 
access or promotes RNA degradation. A combination of 
RNA sequencing and bioinformatics led to the identifica-
tion of putative small RNAs in the genomes of S. coelicolor 
[119]. Stach and co-authors recently reported the use of 
synthetic RNA silencing to regulate actinorhodin produc-
tion in S. coelicolor [117]. Peptide nucleic acid (PNA), a 
DNA with non-natural linkages between bases, fused to a 
cell wall permeating peptide complementary to the actI-
ORF1 transcript was found to nearly abolish actinorhodin 
production when supplemented to the media. The use of 
PNA-peptide prevents degradation by the host cell enzymes 
and allows simple introduction of silencing molecules into 
the cell without genetic manipulations. This approach is 
particularly interesting for use in streptomycetes, since 
genetic transformation is not required. However, due to 
the high cost of synthesis, PNA utilization is limited. In 
another approach, a 155-bp fragment complementary to the 
5′UTR of actI-ORF1 was expressed in S. coelicolor from 
nitAp and tipAp resulting in the production of trans-acting 
antisense RNA and a consequent decrease in antibiotic 
accumulation in the strain. This approach requires genetic 
manipulations with the strain so it cannot be applied to the 
many species lacking protocols for genetic transforma-
tion. However, it is still a useful tool for studying lethal 
gene function or for controlling toxic proteins or secondary 
metabolite production.

Another approach involving small RNA to control gene 
expression in streptomycetes was developed by Suess and 
co-authors [95]. They tested the ability of six different syn-
thetic theophylline-dependent riboswitches to silence the 
expression of the gusA reporter gene from ermEp1. A typi-
cal riboswitch consists of an aptamer region that binds an 
inducer molecule and an expressional part that modulates 
the expression of a target gene [13]. Supplementing the host 
strain with the inducer leads to conformational changes of 
the RNA which allows ribosomes to access the RBS. In S. 
coelicolor harboring the respective constructs, the addition 
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of theophilin to the growth media induced expression of the 
gusA transcript. The maximum level of induction achieved 
by one of the riboswitches resulted in a 32-fold increase in 
reporter activity compared to the uninduced culture. How-
ever, in all cases, the full induction of gusA expression 
was not achieved. Riboswitches were found to be compat-
ible with three different promoters tested, showed strictly 
dose-dependent induction of target gene expression, and 
good induction-repression kinetics. Thus riboswitches are 
alternatives to inducible promoter systems. The disadvan-
tages of this system are that in high concentrations theo-
phyline is toxic to Streptomyces cells and full repression of 
gene expression was also not observed with any construct. 
Despite these problems, this approach represents an inter-
esting tool for controlling Streptomyces gene expression on 
a translational level.

Further development of new genetic tools as well as their 
adaptation from other bacteria will lead to a large number 
of available transcriptional and translational control ele-
ments for Streptomycetes genetics. Implementation of such 
technologies like aptamers, synthetic riboswitches, and 
self-processing ribozymes will further expand the number 
of expression control elements for use in streptomycetes.

Tools to build a metabolic factory

Most secondary metabolism gene clusters span large 
regions of the chromosome (a typical type II PKS gene 
cluster is around 35 kb in size). Manipulations with large 
fragments of DNA require utilization of specific tools and 
non-traditional approaches for cloning, assembly, rear-
rangement, and delivery into the expression hosts. Shuttle 
BAC-based genomic libraries could be a partial solution. 
However, even in such cases, additional assembly of large 
fragments of DNA from several clones might be required. 
Implementation of cloning methods with the use of restric-
tion endonucleases for modification of secondary metabo-
lites gene clusters is almost impossible. The development 
of recombination cloning methods overcame the difficul-
ties of manipulating large fragments of DNA. The use of 
a homologous recombination approach to assemble two 
overlapping fragments of the red cluster in S. coelicolor 
was first reported by Hopwood and co-authors [65]. Dis-
covery of Red/ET cloning based on λ phage RedA/RedB 
recombinase became a breakthrough technology in gene 
engineering [23, 133]. With further adaptation to strep-
tomycetes applications it became an indispensable tool 
for engineering secondary metabolism gene clusters 
[37]. Recently, this technique was successfully applied to 
assemble two clones containing the myxochromide S bio-
synthetic gene cluster from Stigmatella aurantiaca [125]. 
Several other approaches for large DNA fragment assem-
bly exist and are reviewed elsewhere [135]. Combined 

with long-range amplification PCR, these methods allow 
direct cloning of entire gene clusters from streptomycetes. 
Homologous recombination in yeast was used to clone and 
express the aureothin and spectinabilin biosynthesis gene 
clusters from S. thioluteus and S. spectabilis in yeast [103]. 
These methods are far superior to the time-consuming and 
expensive construction and screening of gene libraries. 
The big advantage of this technique is that site-directed 
modifications of biosynthetic genes can be generated by 
simply introducing desired mutations into the correspond-
ing primers. With second-generation sequencing technolo-
gies allowing fast verification of assembled constructs, this 
approach will become a powerful tool for rapid cloning and 
modification of secondary metabolite gene clusters.

The Red/ET system is often used to further modify 
gene clusters that were assembled or cloned in conven-
tional ways. However, in such cases, resistance markers 
are usually introduced that may cause a polar effect on 
downstream gene expression. The number of resistance 
markers that can be efficiently used in streptomycetes is 
limited. Thus, the generation of multiple genetic mutations 
in the same cosmid or the same strain is also restricted. 
Site-specific recombination has become an indispensable 
tool for marker re-utilization. Several recombinases have 
been successfully adopted for use in Streptomyces. The 
Cre/loxP system has been used for marker excision in dif-
ferent actinomycetes with efficiencies ranging from 60 to 
100 % [28, 53]. Recently, two other site-specific recombi-
nases Flp and Dre have been adopted for use in actinomy-
cetes [28, 40]. These systems have been used in different 
applications ranging from simple marker removal to more 
complex genome minimization projects. Several marker-
less expression vectors have been developed using Cre and 
Dre recombinases as well.

With the significant cost decrease in genome sequenc-
ing and the development of rapid screening approaches, 
conventional mutagenesis techniques acquired a new 
life. UV and chemical mutagenesis can be used as ways 
to increase the production of known metabolites as well 
as to awaken silent gene clusters. Combined with whole-
genome sequencing, it will provide new information about 
the regulation of secondary metabolism in streptomycetes. 
Development of reporter systems with simple and reli-
able methods of transcriptional and translational activ-
ity detection will facilitate the design of screening strate-
gies for activation of silent clusters. This can be achieved 
by transcriptional or translational fusion of the target gene 
promoter to the reporter. A similar strategy was used in 
the reporter guided screen for daptomycin overproduc-
ing strains [121]. The daptomycin biosynthetic gene dptE 
promoter was fused to a neo reporter gene and strains har-
boring this construct were mutagenized. Activation of the 
dptE promoter produced colonies that were able to grow on 



397J Ind Microbiol Biotechnol (2014) 41:387–402 

1 3

high concentrations of neomycin and 20 % of them were 
characterized by increased antibiotic production. Reporter 
genes can also be used for direct detection of metabolite 
accumulation. A large number of secondary metabolism 
gene clusters contain tetR family regulator and transporter 
gene pairs. The regulatory protein controls expression of 
the transporter gene in response to the accumulation of the 
produced compound. Binding of the compound to TetR 
releases this repressor from the transport gene promoter 
resulting in active expression of the reporter gene. Using 
the appropriate reporter, the system can be tuned to detect 
the compound quantitatively. This approach was used in the 
generation of a biosensor system for detection of new land-
omycins by cloning the lanK regulatory gene and fusing 
the lanJ gene target promoter to a neo reporter [79].

Several reporter systems have been successfully used in 
streptomycetes genetics (Table 3). The E. coli lacZ gene 
encoding β-galactosidase is one of the most widely used 
reporters. However, this gene cannot be used in Strepto-
myces because most strains possess extracellular enzymes 
with β-galactosidase activity which interferes with reporter 
detection. Special mutant strains or growth conditions are 
required for utilization of lacZ [54]. Two reporter sys-
tems based on either neomycin/kanamycin resistance (neo 
encoding aminoglycoside phosphotransferase) or chlo-
ramphenicol resistance (cat encoding chloramphenicol 

acetyltransferase) have been widely used for cloning and 
characterization of streptomycetes promoters [7, 123]. In 
vitro assays exist for simple detection of Cat and Neo activ-
ity, however, direct in vivo quantification is limited.

Several vectors utilizing enhanced GFP variants have 
been constructed and successfully used to study the subcel-
lular localization of proteins in Streptomyces [111]. How-
ever, eGFP utilization is limited due to the high levels of 
auto-fluorescence of mycelia as well as the low applicabil-
ity for quantitative analysis [45]. To overcome at least one 
of these two issues, an S. coelicolor strain with decreased 
levels of autofluorescence was selected and used in several 
studies [127]. Recently, monomeric red fluorescent protein 
(mRFP1) was reported for detection of protein localiza-
tion in streptomycetes [75]. This system is compatible with 
eGFP providing a useful tool for simultaneous detection of 
two proteins. However, it has the same limitations as the 
eGFP system.

Luciferase assays provide rapid and sensitive methods of 
gene expression analysis due to the simplicity of light emis-
sion detection and its linearity in a long range of measure-
ments. Furthermore, streptomycetes typically do not show 
any autoluminescence resulting in a low signal-to-noise 
ratio. The activity of luciferase can be easily measured 
quantitatively in 96-well-plate formats and on solid media. 
Several different luciferase systems have been applied in 

Table 3  Reporter genes used in Streptomyces research

Reporter Description References

lacZ E. coli β-galactosidase. Low activity in streptomycetes, requires dedicated host strains. Activity can be detected in vivo 
and in vitro

[54]

neo Aminoglycoside phosphotransferase from Tn5. Neomycin/kanamycin resistance. Activity can be detected in vivo and in 
vitro. Limited use for in vivo quantification

[123]

cat Chloramphenicol acetyltransferase from Tn9. Chloramphenicol resistance. Activity can be detected in vivo and in vitro. 
Limited use for in vivo quantification

[7]

eGFP Enhanced Green Fluorescent Protein from jelly fish Aequorea Victoria. Fluorescence emission peak at 509 nm in green 
visible spectra. Can be detected in vivo and in vitro. In vivo quantification is not possible

[111, 127]

mRFP1 Monomeric Red Fluorescent Protein. Fluorescence emission peak at 607 nm in green visible spectra. Can be detected in 
vivo and in vitro. In vivo quantification is not possible

[14, 75]

LuxAB Luciferase from Vibrio harveyii. Chemiluminescent detection. Requires supply of substrate n-aldehyde decanal. Can be 
detected in vivo and in vitro. Allows in vivo quantification in 96-well plates and to some extent on solid media

[106]

luxCDABE Luciferase and substrate biosynthesis operon from Photorhabdus luminescens. Chemiluminescent detection. Does not 
require external substrate supply. Can be detected in vivo and in vitro. Allows in vivo quantification in 96-well plates 
and to some extent on solid media

[21]

melC Tyrosinase from S. glaucescens. Chromogenic detection. Requires external supply of substrate tyrosine. Can be detected 
in vivo and in vitro. Not suitable for quantitative analysis

[82]

xylE Catechol 2,3-dioxygenase from Pseudomonas putida. Chromogenic detection. Requires supply of substrate catechol. 
Can be detected in vivo and in vitro. Suitable for quantitative analysis in liquid and solid media

[48]

rppA Chalcone synthases from S. erythraea. Chromogenic detection. Does not require external substrate supply. Can be 
detected in vivo and in vitro. Suitable for quantitative analysis in liquid and solid media

[64]

gusA β-Glucuronidase from E. coli. Requires substrate supply. Different glucuronide derivatives are available allowing 
chromogenic, spectrophotometric, fluorimetric, and chemiluminescent detection. Can be detected in vivo and in vitro. 
Suitable for quantitative analysis in liquid and solid media

[72]
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streptomycetes research including luxAB from Vibrio har-
veyii and firefly luc-gene [85, 106]. However, the use of 
the original luxAB operon is limited due to high AT codon 
usage and a complex enzymatic reaction that requires mul-
tiple substrates for activity detection. The luxAB operon 
lacking TTA codons was constructed to overcome one of 
these issues [91, 124]. Firefly luc encoded luciferase also 
strictly depends on the externally supplied substrate lucif-
erin. Recently, a synthetic luxCDABE operon of the biolu-
minescent bacterium Photorhabdus luminescens has been 
reported to be used as a transcriptional reporter for strep-
tomycetes [21]. It encodes a luciferase (LuxA and LuxB) 
and substrate producing enzymes (LuxC, LuxD, and LuxE) 
such that cells expressing the operon emit light spontane-
ously. There is no need to externally supply substrates, 
which makes this luxCDABE system more reliable for 
quantitative analysis.

The melC operon of S. glaucescens is the most used 
chromogenic reporter for gene expression analysis in strep-
tomycetes [82]. It consists of two ORFs: melC1, respon-
sible for transport of copper to tyrosinase, and melC2—
encoding tyrosinase. MelC2 is a monooxygenase that 
oxidizes l-tyrosine to form the black pigment melanin. 
Several reporter vectors based on this system have been 
constructed. melC is well suited for the selection of mutants 
due to chromogenic activity detection that allows for sim-
ple screening of a large number of colonies. However, it 
cannot be used for quantitative analysis because tyrosinase 
is secreted from the cells.

The catechol 2,3-dioxygenase xylE gene of Pseu-
domonas putida has been used successfully as an alter-
native chromogenic reporter in Streptomyces [48]. The 
simplicity of detection based on conversion of colorless 
catechol to the yellow compound 2-hydroxy muconic semi-
aldehyde and the absence of xylE in the majority of organ-
isms has led to wide utilization of this reporter. In addition, 
xylE activity in cell extracts can be measured spectropho-
tometrically. Multiple reporter vectors have been created 
utilizing xylE that allow simple and rapid identification of 
mutant colonies during growth on agar media as well as 
further quantitative analysis in vitro [20, 101].

Recently, Petković and co-authors reported characteriza-
tion of chalcone synthase gene rppA from S. erythraea as 
a reporter for gene expression analysis [64]. RppA activity 
leads to accumulation of the dark-red compound flaviolin. 
RppA does not require external substrate addition, is sim-
ple in detection, flaviolin is not toxic to the host strains, 
and is stable for a long time, allowing measurements to be 
performed after collection of sample in time-point experi-
ments. However, many Streptomyces strains may produce 
compounds with similar spectral characteristics interfering 
with flaviolin detection. Broad starter substrate specificity 
of RppA may cause variations in absorption spectra as well 

as the availability of malonyl-CoA in different strains and 
under different growth conditions might influence the yield 
of compound production. The latter could be used advanta-
geously to probe substrate pools in different strains selected 
for heterologous expression of PKS genes.

Luzhetskyy and co-authors reported the adaptation of 
the gusA gene encoding β-glucuronidase from E. coli for 
expression in streptomycetes [72]. Heterologous genes as 
reporters are always preferable since most actinomycetes 
strains lack β-glucuronidase activity. The gusA system 
was found to be extremely sensitive and simple in both 
in vivo and in vitro detection. The availability of differ-
ent glucuronide derivatives including X-gluc, MUG, and 
p-nitrophenyl-β-d-glucuronide makes visual, spectropho-
tometric, fluorimetric, and chemiluminescent detection of 
GusA activity possible. Additionally, several variants of 
gusA with different start codons have been produced that 
allow tuning of translational expression of the reporter 
gene. When used in a low copy number or an integrative 
vector, gusA did not show high variability of expression 
from the same promoter in different colonies.

Several other native and heterologous genes have been 
utilized as reporter systems in streptomycetes as well, 
including the redD regulator for undecylprodigiosin pro-
duction [118], the whiE spore pigment operon [43], and 
the thermostable malate dehydrogenase of Thermus flavus 
[120]. However, all of them have numerous limitations for 
usage or are dedicated to specific host strains. In summary, 
the large number and diversity of reporter systems available 
provide a large choice of tools for studying different aspects 
of gene expression in streptomycetes, including activation of 
silent secondary metabolism gene clusters. These systems, 
combined with other synthetic biology tools and expression 
systems, represent a powerful pool of instruments for genetic 
manipulations in this prominent group of bacteria.
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